Top

Discussion

The angle of elevation of the top of a tower from two points P and Q at a distance of ‘a’ and ‘b’ respectively, from the base and in the same straight line with it are complementary. Prove that height

  • A.Statement is proved
  • B.Statement is not proved
  • C.Statement is not correct
  • D.Data is InadequateLet L SPR = θ then L SQR = 90º – θ and RS = h, 
    In Δ SPR, tan θ = h/a Or, h = a tan θ --------------------------------- (i) 
    In ΔSQR, tan (90º – θ) = h/b Or, h = b tan (90º – θ) = h cot θ ----- (ii) 
    Multiplying (i) and (ii) we get, h2 = a tan θ b cot θ = a b 
    Or, h = √(a b). [Proved.] 

Answer: A

Let L SPR = θ then L SQR = 90º – θ and RS = h, 
In Δ SPR, tan θ = h/a Or, h = a tan θ --------------------------------- (i) 
In ΔSQR, tan (90º – θ) = h/b Or, h = b tan (90º – θ) = h cot θ ----- (ii) 
Multiplying (i) and (ii) we get, h2 = a tan θ b cot θ = a b 
Or, h = √(a b). [Proved.] 

No comment is present. Be the first to comment.
Loading…

Post your comment