Top

Discussion

Two poles standing on the same side of a tower in a straight line with it, measure the angles of elevation of the top of the tower at 25º and 50º respectively. If the height of the tower is 70 m, find

  • A.31.27 m
  • B.89.27 m
  • C.29.27 m
  • D.92.27 m

Answer: B

Let AB be the tower and C and D the poles. AB = 70 m. 
In Δ ABC, cot 50º = BC/AB 
Or, cot (90º – 40º) = BC/70 
Or, tan 40º = BC/70 
Or, 0.8391 = BC/70 
Or, BC = 0.8391 × 70 = 58.74 m. 
In Δ ABD, cot 25º = BD/AB 
Or, cot (90º – 65º) = BD/70 
Or, tan 65º = BD/70 
Or, 2.114451 = BD/70 
Or, BD = 2.114451 × 70 = 148.01 m. 
Hence, distance between people = CD = BD – BC 
= 148.01 – 58.74 = 89.27 m.

No comment is present. Be the first to comment.
Loading…

Post your comment