What is the value of \(\sqrt[3]{4 \frac{12}{125}}\)?
Answer: C
First, convert the mixed fraction to an improper fraction.
\(4 \frac{12}{125} = \frac{4 \times 125 + 12}{125} = \frac{500+12}{125} = \frac{512}{125}\).
Now find the cube root: \(\sqrt[3]{\frac{512}{125}} = \frac{\sqrt[3]{512}}{\sqrt[3]{125}}\).
We know \(8^3 = 512\) and \(5^3 = 125\).
So the value is \(\frac{8}{5} = 1.6\).