Top

Discussion

In a bag, there are coins of \(25 p, 10 p\) and \(5 p\) in the ratio of \(1 : 2 : 3.\) If there is \(Rs. 30\) in all, how many \(5 p\) coins are there?

  • A.50
  • B.100
  • C.150
  • D.200

Answer: C

Let the number of \(25 p, 10 p\) and \(5 p\) coins be \(x, 2x, 3x \) respectively.

Then, sum of there value \(= Rs. (\frac{25x}{100} + \frac{10 \times 2x}{100} + \frac{5 \times 3x}{100}) = Rs. \frac{60x}{100}\)

\(\therefore \frac{60x}{100} = 30 \Leftrightarrow x = \frac{300 \times 100}{60} = 50.\) 

Heance, the number of \(5 p\) coins \(= (3 \times 50) = 150.\)

No comment is present. Be the first to comment.
Loading…

Post your comment