\(\frac{1}{1+x^{(b-a)}+x^{(c-a)}}+\frac{1}{1+x^{(a-b)}+x^{(c-b)}}+\frac{1}{1+x^{(b-c)}+x^{(a-c)}}=?\)
Answer: B
Given Exp.= \(\frac{1}{(1+\frac{x^{b}}{x^{a}}+\frac{x^{c}}{x^{a}})}+\frac{1}{(1+\frac{x^{a}}{x^{b}}+\frac{x^{c}}{x^{b}})}+\frac{1}{(1+\frac{x^{b}}{x^{c}}+\frac{x^{a}}{x^{c}})}\)
\(=\frac{x^{a}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{b}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{c}}{(x^{a}+x^{b}+x^{c})}\)
\(=\frac{(x^{a}+x^{b}+x^{c})}{(x^{a}+x^{b}+x^{c})} \)
\(=1\)