Top

Discussion

\(\frac{(243)^{n/5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}=?\)

  • A.1
  • B.2
  • C.9
  • D.3^n

Answer: C

Given Expression = \(\frac{(243)^{(n/5)}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}\)

\(=\frac{(3^{5})^{(n/5)}\times 3^{2n+1}}{(3^{2})^{n}\times 3^{n-1}}\)

\(=\frac{(3^{5\times(n/5))}\times 3^{2n+1}}{(3^{2n}\times 3^{n-1})}\)

\(=\frac{3^{n\times3^{2n+1}}}{3^{2n}\times3^{n-1}}\)

\(=\frac{3^{(n+2n+1)}}{3^{(2n+n-1)}}\)

\(=\frac{3^{3n+1}}{3^{3n-1}}\)

\(=3^{(3n+1-3n+1)}=3^{2}=9\)

No comment is present. Be the first to comment.
Loading…

Post your comment