Top

Discussion

\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=?\)

  • A.1/2
  • B.1
  • C.a^(m+n)

Answer: C

\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=\frac{1}{(1+\frac{a^{n}}{a^{m}})}+\frac{1}{(1+\frac{a^{m}}{a^{n}})}\)

\(=\frac{a^{m}}{(a^{m}+a^{m})}+\frac{a^{m}}{(a^{m}+a^{n})}\)

\(=\frac{(a^{m}+a^{n})}{(a^{m}+a^{n})}\)

=1

No comment is present. Be the first to comment.
Loading…

Post your comment