\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=?\)
Answer: C
\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=\frac{1}{(1+\frac{a^{n}}{a^{m}})}+\frac{1}{(1+\frac{a^{m}}{a^{n}})}\)
\(=\frac{a^{m}}{(a^{m}+a^{m})}+\frac{a^{m}}{(a^{m}+a^{n})}\)
\(=\frac{(a^{m}+a^{n})}{(a^{m}+a^{n})}\)
=1