Top

Discussion

If \(2^x \times 16^{\frac{2}{5}} = 2^{\frac{1}{5}}\), then \(x\) is equal to:

  • A.2/5
  • B.-2/5
  • C.7/5
  • D.-7/5

Answer: D

\(2^x \times 16^{\frac{2}{5}} = 2^{\frac{1}{5}}\)

\(\Rightarrow 2^x \times (2^4)^{\frac{2}{5}} = 2^{\frac{1}{5}} \)

\(\Rightarrow 2^x \times 2^{\frac{8}{5}}= 2^{\frac{1}{5}} \)

\(\Rightarrow 2^{(x+ \frac{8}{5})} = 2^{\frac{1}{5}} \)

\(\Rightarrow x + \frac{8}{5} = \frac{1}{5} \)

\(\Rightarrow x = (\frac{1}{5} - \frac{8}{5}) = -\frac{7}{5}\)

No comment is present. Be the first to comment.
Loading…

Post your comment