Top

Discussion

If \(\tan(A+B) = \sqrt{3}\) and \(\tan(A-B) = \frac{1}{\sqrt{3}}\), find A and B.

  • A.A=45°, b=15°
  • B.A=60°, b=0°
  • C.A=15°, b=45°
  • D.A=75°, b=15°

Answer: A

From the given information:

1) \(\tan(A+B) = \sqrt{3} \Rightarrow A+B = 60°\)

2) \(\tan(A-B) = \frac{1}{\sqrt{3}} \Rightarrow A-B = 30°\)

We have a system of two linear equations. Adding them gives:

2A = 90° => A = 45°.

Substituting A=45° into the first equation: 45° + B = 60° => B = 15°.

No comment is present. Be the first to comment.
Loading…

Post your comment