Top

Discussion

The value of \(\frac{1-\tan^2 45°}{1+\tan^2 45°}\) is:

  • A.Tan 90°
  • B.1
  • C.Sin 45°
  • D.0

Answer: D

We know that \(\tan 45° = 1\).

Substitute this value into the expression:

\(\frac{1 - (1)^2}{1 + (1)^2} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0\).

Alternatively, this is the formula for \(\cos(2\theta)\), so it equals \(\cos(2 \times 45°) = \cos 90° = 0\).

No comment is present. Be the first to comment.
Loading…

Post your comment