Top

Discussion

The minimum value of \(2\sin^2\theta + 3\cos^2\theta\) is:

  • A.1
  • B.2
  • C.3
  • D.5

Answer: B

We can rewrite the expression using the identity \(\sin^2\theta + \cos^2\theta = 1\).

\(2\sin^2\theta + 3\cos^2\theta = 2\sin^2\theta + 2\cos^2\theta + \cos^2\theta\)

= \(2(\sin^2\theta + \cos^2\theta) + \cos^2\theta\)

= \(2(1) + \cos^2\theta = 2 + \cos^2\theta\).

The value of \(\cos^2\theta\) ranges from 0 to 1. To get the minimum value of the expression, we take the minimum value of \(\cos^2\theta\), which is 0.

Minimum value = 2 + 0 = 2.

No comment is present. Be the first to comment.
Loading…

Post your comment