If \(5\tan A = 4\), the value of \(\frac{5\sin A - 3\cos A}{5\sin A + 2\cos A}\) is:
Answer: C
From the given equation, \(\tan A = 4/5\).
Divide the numerator and denominator of the expression by \(\cos A\):
\(\frac{5\tan A - 3}{5\tan A + 2}\)
Substitute the value of \(\tan A\):
\(\frac{5(4/5) - 3}{5(4/5) + 2} = \frac{4-3}{4+2} = \frac{1}{6}\).