Top

Discussion

If \(\sin A = \frac{12}{13}\), find the value of \(\sec A\).

  • A.5/13
  • B.13/5
  • C.12/5
  • D.5/12

Answer: B

Given \(\sin A = \frac{12}{13}\) (Opposite/Hypotenuse). We can find the adjacent side using the Pythagorean theorem: \(Adj = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25} = 5\).

\(\cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{13}\).

\(\sec A = \frac{1}{\cos A} = \frac{13}{5}\).

No comment is present. Be the first to comment.
Loading…

Post your comment