If \(\sin A = \frac{12}{13}\), find the value of \(\sec A\).
Answer: B
Given \(\sin A = \frac{12}{13}\) (Opposite/Hypotenuse). We can find the adjacent side using the Pythagorean theorem: \(Adj = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25} = 5\).
\(\cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{13}\).
\(\sec A = \frac{1}{\cos A} = \frac{13}{5}\).