Top

Logarithms

View Questions of Logarithms

Quantitative Aptitude – Logarithms

1. Definition

Logarithm: \( \log_b(a) = c \equiv b^c = a. \)

2. Log Laws

  • \( \log_b(mn) = \log_b(m) + \log_b(n) \)
  • \( \log_b\left(\frac{m}{n}\right) = \log_b(m) - \log_b(n) \)
  • \( \log_b(m^k) = k \log_b(m) \)
  • Change of base: \( \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \)

3. Applications

  • Solve exponential equations using logs.
  • Apply in CI problems to solve for time.

4. Quick Tips

  • Memorize logs of 2,3,5,10 for easy conversions.
  • Use change of base to convert unfamiliar logs to base 10 or e.

5. Mistakes to Avoid

  • Misapplying addition/subtraction rules.
  • Incorrect change-of-base application.

6. Revision Checklist

  • Practice solving for variables inside and outside log expressions.
  • Convert exponential to log form quickly.

Summary: Use log laws to simplify calculation and convert exponentials to linear form quickly.