\((256)^{0.16}\times (256)^{0.09}=?\)
Answer: A
\((256)^{0.16}\times (256)^{0.09}=(256)^{(0.16+0.09)}\)
\(=(256)^{0.25}\)
\(=(256)^{(25/100)}\)
\(=(256)^{(1/4)}\)
\(=(4^{4})^{(1/4)}\)
\(=4^{4(1/4)}\)
\(=4^{1}\)
\(=4\)
Enter details here
\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=n^{?}\)
Answer: B
\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}} \)
\(= \frac{1}{(1+\frac{an}{am})}+\frac{1}{(1+\frac{am}{an})} \)
\(= \frac{am}{(am+an)}+\frac{an}{(am+an)} \)
\(= \frac{(am+an)}{(am+an)} \)
\(= 1\)
Enter details here
If \(2^x \times 16^{\frac{2}{5}} = 2^{\frac{1}{5}}\), then \(x\) is equal to:
Answer: D
\(2^x \times 16^{\frac{2}{5}} = 2^{\frac{1}{5}}\)
\(\Rightarrow 2^x \times (2^4)^{\frac{2}{5}} = 2^{\frac{1}{5}} \)
\(\Rightarrow 2^x \times 2^{\frac{8}{5}}= 2^{\frac{1}{5}} \)
\(\Rightarrow 2^{(x+ \frac{8}{5})} = 2^{\frac{1}{5}} \)
\(\Rightarrow x + \frac{8}{5} = \frac{1}{5} \)
\(\Rightarrow x = (\frac{1}{5} - \frac{8}{5}) = -\frac{7}{5}\)
Enter details here
\((25)^{7.5} \times (5)^{2.5} \div (125)^{1.5} = 5?\)
Answer: B
Let \((25)^{7.5} \times (5)^{2.5} \div (125)^{1.5} = 5x.\)
Then, \(\frac{(5)^{7.5} \times (5)^{2.5}}{(5^{3})^{1.5}} = 5x \)
\(\Rightarrow \frac{5^{(2 \times 7.5)} \times (5)^{2.5}}{5^{(3 \times 1.5)}} = 5x\)
\(\Rightarrow \frac{5^{15} \times 5^{2.5}}{5^{4.5}} = 5x\)
\(\Rightarrow 5x = 5^{(15+2.5-4.5)} \)
\(\Rightarrow 5x = 5^{13}, \therefore x = 13\)
Enter details here
\((25)^{7.5}\times(5)^{2.5}\div(125)^{1.5}=5^?\)
Answer: B
Let \((25)^{7.5}\times(5)^{2.5}\div(125)^{1.5}=5^{x}.\)
Then, \(\frac{(5^{2})^{7.5}\times(5)^{2.5}}{(5^{3})^{1.5}}=5^{x}\)
\(\Rightarrow \frac{5^{(2\times7.5)}\times5^{2.5}}{5^{(3\times1.5)}}=5^x\)
\(\Rightarrow \frac{5^{15}\times5^{2.5}}{5^{4.5}}=5^x\)
\(\Rightarrow 5^{x}=5^{(15+2.5-4.5)}\)
\(\Rightarrow 5^{x}=5^{13}\)
\(\therefore x=13\)
Enter details here
If \(m\) and \(n\) are whole numbers such that \(m^{n}=121\), the value of \((m-1)^{n+1}\) is:
Answer: D
We know that \(11^{2}=121\).
Putting m = 11 and n = 2, we get:
\((m-1)^{n+1}=(11-1)^{(2+1)}=10^{3}=1000\).
Enter details here
\(\frac{1}{1+x^{(b-a)}+x^{(c-a)}}+\frac{1}{1+x^{(a-b)}+x^{(c-b)}}+\frac{1}{1+x^{(b-c)}+x^{(a-c)}}=?\)
Answer: B
Given Exp.= \(\frac{1}{(1+\frac{x^{b}}{x^{a}}+\frac{x^{c}}{x^{a}})}+\frac{1}{(1+\frac{x^{a}}{x^{b}}+\frac{x^{c}}{x^{b}})}+\frac{1}{(1+\frac{x^{b}}{x^{c}}+\frac{x^{a}}{x^{c}})}\)
\(=\frac{x^{a}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{b}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{c}}{(x^{a}+x^{b}+x^{c})}\)
\(=\frac{(x^{a}+x^{b}+x^{c})}{(x^{a}+x^{b}+x^{c})} \)
\(=1\)
Enter details here
\((0.04)^{-1.5}=?\)
Answer: B
\((0.04)^{-1.5}=(\frac{4}{100})^{-1.5}\)
\(= (\frac{1}{25})^{-(3/2)}\)
\(= (25)^{(3/2)}\)
\(= (5^{2})^{(3/2)}\)
\(= (5)^{2\times(3/2)}\)
\(= 5^3\)
=125
Enter details here
If \(\sqrt{(3+3\sqrt{x})} = 2\), then \(x\) is equal to:
Answer: A
Exp: On squaring both sides, we get:
\(3+3\sqrt{x} = 4\) or \(3\sqrt{x} = 1\)
Cubing both sides, we get \(x = (1\times 1\times 1) = 1\)
Enter details here
\((25)^{7.5}\times(5)^{2.5}\div(125)^{1.5}=5^?\)
Answer: B
Let \((25)^{7.5}\times(5)^{2.5}\div(125)^{1.5}=5^x\)
Then, \(\frac{(5^{2})^{7.5}\times (5)^{2.5}}{(5^{3})^{1.5}}=5^x\)
\(\Rightarrow \frac{5^{(2\times7.5)}\times5^{2.5}}{(5^{3\times1.5})}=5^x\)
\(\Rightarrow \frac{5^{15}\times5^{2.5}}{5^{4.5}}=5^x\)
\(\Rightarrow 5^{x}=5^{(15+2.5-4.5)}\)
\(\Rightarrow 5^{x}=5^{13}\)
\(\therefore x=13\)
Enter details here