Top

Surds & Indices

Important Instructions
41.

If \(7^a = 16807\), then the value of \(7^{(a-3)}\) is:

Answer: A

\(7^a = 16807, \)

\(\Rightarrow 7^a = 7^5, a = 5\)

Therefore, \(7^{(a-3)} = 7^{(5-3)} = 7^2 = 49\)

Enter details here

42.

\(\frac{(243)^{n/5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}=?\)

Answer: C

Given Expression = \(\frac{(243)^{(n/5)}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}\)

\(=\frac{(3^{5})^{(n/5)}\times 3^{2n+1}}{(3^{2})^{n}\times 3^{n-1}}\)

\(=\frac{(3^{5\times(n/5))}\times 3^{2n+1}}{(3^{2n}\times 3^{n-1})}\)

\(=\frac{3^{n\times3^{2n+1}}}{3^{2n}\times3^{n-1}}\)

\(=\frac{3^{(n+2n+1)}}{3^{(2n+n-1)}}\)

\(=\frac{3^{3n+1}}{3^{3n-1}}\)

\(=3^{(3n+1-3n+1)}=3^{2}=9\)

Enter details here

43.

Solve for \(m\) if \(49(7^m) = 343^{3m+6}\)

Answer: B

Exp: \(49(7^m) = 343^{3m+6} \)

\(\Rightarrow 7^2 7^m = (7^3)^{3m+6} \)

\(\Rightarrow 7^{2+m} = 7^{9m+18}\)

Equating powers of 7 on both sides,

\(\Rightarrow m + 2 = 9m + 18\)

\(\Rightarrow - 16 = 8m\)

\(\Rightarrow m = -2\)

Enter details here

44.

If \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\), then the value of \(x\) is:

Answer: C

Given \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\)

\(\Rightarrow (\frac{a}{b})^{x-1}= (\frac{a}{b})^{-(x-3)}=(\frac{a}{b})^{(3-x)}\)

\(\Rightarrow x-1=3-x\)

\(\Rightarrow 2x=4\)

\(\Rightarrow x=2\)

Enter details here

45.

If \(x\) is an integer, find the minimum value of \(x\) such that \(0.00001154111\times 10^x\) exceeds 1000.

Answer: A

Exp: Considering from the left if the decimal point is shifted by 8 places to the right, the number

becomes 1154.111. Therefore, \(0.00001154111\times 10^x\) exceeds 1000 when \(x\) has a minimum value of 8.

Enter details here

46.

The value of \([(10)^{150} \div (10)^{146}]\)

Answer: B

\((10)^{150} \div (10)^{146} \)

\(= \frac{10^{150}}{10^{146}}\)

\(= 10^{150-146} \)

\(= 10^{4} = 10000\)

Enter details here

47.

The simplified form of \((x^{\frac{7}{2}}\div x^{\frac{5}{2}})\times \sqrt{y3}\div \sqrt{y}\) is:

Answer: D

\((x^{\frac{7}{2}}\div x^{\frac{5}{2}})\times \sqrt{y3}\div \sqrt{y} \)

\(= x^{(\frac{7}{2}-\frac{5}{2})}\times y^{(\frac{3}{2}-\frac{1}{2})} \)

\(= xy\)

Enter details here

48.

\((\frac{1}{216})^{-\frac{2}{3}}\div(\frac{1}{27})^{-\frac{4}{3}}=?\)

Answer: C

\((\frac{1}{216})^{-\frac{2}{3}}\div(\frac{1}{27})^{-\frac{4}{3}} \)

\(= 216^{\frac{2}{3}}\div27^{\frac{4}{3}} \)

\(= (63)^{\frac{2}{3}}\div(33)^{\frac{4}{3}} \)

\(= \frac{4}{9}\)

Enter details here

49.

\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=?\)

Answer: C

\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=\frac{1}{(1+\frac{a^{n}}{a^{m}})}+\frac{1}{(1+\frac{a^{m}}{a^{n}})}\)

\(=\frac{a^{m}}{(a^{m}+a^{m})}+\frac{a^{m}}{(a^{m}+a^{n})}\)

\(=\frac{(a^{m}+a^{n})}{(a^{m}+a^{n})}\)

=1

Enter details here

50.

The value of \(5^{\frac{1}{4}}\times(125)^{0.25}\) is:

Answer: C

\(5^{0.25}\times(5^3)^{0.25}=5^1=5\)

Enter details here

Loading…
Tags: Surds & Indices Questions and Answers || Surds & Indices MCQ Questions and Answers || Surds & Indices GK Questions and Answers || Surds & Indices GK MCQ Questions || Surds & Indices Multiple Choice Questions and Answers || Surds & Indices GK || GK on Surds & Indices || Quantitative Aptitude Questions and Answers || Quantitative Aptitude MCQ Questions and Answers || Quantitative Aptitude GK Questions and Answers || GK on Quantitative Aptitude