If \(7^a = 16807\), then the value of \(7^{(a-3)}\) is:
Answer: A
\(7^a = 16807, \)
\(\Rightarrow 7^a = 7^5, a = 5\)
Therefore, \(7^{(a-3)} = 7^{(5-3)} = 7^2 = 49\)
Enter details here
\(\frac{(243)^{n/5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}=?\)
Answer: C
Given Expression = \(\frac{(243)^{(n/5)}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}\)
\(=\frac{(3^{5})^{(n/5)}\times 3^{2n+1}}{(3^{2})^{n}\times 3^{n-1}}\)
\(=\frac{(3^{5\times(n/5))}\times 3^{2n+1}}{(3^{2n}\times 3^{n-1})}\)
\(=\frac{3^{n\times3^{2n+1}}}{3^{2n}\times3^{n-1}}\)
\(=\frac{3^{(n+2n+1)}}{3^{(2n+n-1)}}\)
\(=\frac{3^{3n+1}}{3^{3n-1}}\)
\(=3^{(3n+1-3n+1)}=3^{2}=9\)
Enter details here
Solve for \(m\) if \(49(7^m) = 343^{3m+6}\)
Answer: B
Exp: \(49(7^m) = 343^{3m+6} \)
\(\Rightarrow 7^2 7^m = (7^3)^{3m+6} \)
\(\Rightarrow 7^{2+m} = 7^{9m+18}\)
Equating powers of 7 on both sides,
\(\Rightarrow m + 2 = 9m + 18\)
\(\Rightarrow - 16 = 8m\)
\(\Rightarrow m = -2\)
Enter details here
If \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\), then the value of \(x\) is:
Answer: C
Given \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\)
\(\Rightarrow (\frac{a}{b})^{x-1}= (\frac{a}{b})^{-(x-3)}=(\frac{a}{b})^{(3-x)}\)
\(\Rightarrow x-1=3-x\)
\(\Rightarrow 2x=4\)
\(\Rightarrow x=2\)
Enter details here
If \(x\) is an integer, find the minimum value of \(x\) such that \(0.00001154111\times 10^x\) exceeds 1000.
Answer: A
Exp: Considering from the left if the decimal point is shifted by 8 places to the right, the number
becomes 1154.111. Therefore, \(0.00001154111\times 10^x\) exceeds 1000 when \(x\) has a minimum value of 8.
Enter details here
The value of \([(10)^{150} \div (10)^{146}]\)
Answer: B
\((10)^{150} \div (10)^{146} \)
\(= \frac{10^{150}}{10^{146}}\)
\(= 10^{150-146} \)
\(= 10^{4} = 10000\)
Enter details here
The simplified form of \((x^{\frac{7}{2}}\div x^{\frac{5}{2}})\times \sqrt{y3}\div \sqrt{y}\) is:
Answer: D
\((x^{\frac{7}{2}}\div x^{\frac{5}{2}})\times \sqrt{y3}\div \sqrt{y} \)
\(= x^{(\frac{7}{2}-\frac{5}{2})}\times y^{(\frac{3}{2}-\frac{1}{2})} \)
\(= xy\)
Enter details here
\((\frac{1}{216})^{-\frac{2}{3}}\div(\frac{1}{27})^{-\frac{4}{3}}=?\)
Answer: C
\((\frac{1}{216})^{-\frac{2}{3}}\div(\frac{1}{27})^{-\frac{4}{3}} \)
\(= 216^{\frac{2}{3}}\div27^{\frac{4}{3}} \)
\(= (63)^{\frac{2}{3}}\div(33)^{\frac{4}{3}} \)
\(= \frac{4}{9}\)
Enter details here
\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=?\)
Answer: C
\(\frac{1}{1+a^{(n-m)}}+\frac{1}{1+a^{(m-n)}}=\frac{1}{(1+\frac{a^{n}}{a^{m}})}+\frac{1}{(1+\frac{a^{m}}{a^{n}})}\)
\(=\frac{a^{m}}{(a^{m}+a^{m})}+\frac{a^{m}}{(a^{m}+a^{n})}\)
\(=\frac{(a^{m}+a^{n})}{(a^{m}+a^{n})}\)
=1
Enter details here
The value of \(5^{\frac{1}{4}}\times(125)^{0.25}\) is:
Answer: C
\(5^{0.25}\times(5^3)^{0.25}=5^1=5\)
Enter details here