Top

Surds & Indices

Important Instructions
31.

\((17)^{3.5}\times (17)^{?}=17^{8}\)

Answer: D

Let \((17)^{3.5}\times (17)^{x}=17^{8}\)

Then, \((17)^{3.5+x}=17^{8}\)

\(\therefore 3.5+x=8 \)

\(\Rightarrow x=(8-3.5) \)

\(\Rightarrow x=4.5\)

Enter details here

32.

If \(a^x = b^y = c^z\) and \(b^2 = ac\), then \(y\) equals:

Answer: D

Let \(a^x = b^y = c^z = k\)

Then, \(a = k^{\frac{1}{x}}, b = k^{\frac{1}{y}}, c = k^{\frac{1}{z}}\)

Therefore, \(b^2 = ac \)

\(\Rightarrow (k^{\frac{1}{y}})^2 = k^{\frac{1}{x}} \times k^{\frac{1}{z}} \)

\(\Rightarrow k^{\frac{2}{y}} = k^{(\frac{1}{x} + \frac{1}{z})}\)

Therefore, \(\frac{2}{y} = \frac{(x+z)}{xz} \)

\(\Rightarrow \frac{y}{2} = \frac{xz}{(x+z)} \)

\(\Rightarrow y = \frac{2xz}{(x + z)}\)

Enter details here

33.

If \(4^{4m+2} = 8^{6m-4}\), solve for \(m\)

Answer: D

Exp: \(4^{4m+2} = (2^3)^{6m-4} \)

\(\Rightarrow 4^{4m+2} = 2^{18m+12}\)

Equating powers of 2 both sides,

\(4m + 2 = 18m -12 \)

\(\Rightarrow 14=14m \)

\(\Rightarrow m=1\)

Enter details here

34.

If \(5^{a}=3125\), then the value of \(5^{(a-3)}\) is:

Answer: A

\(5^{a}=3125 \Leftrightarrow 5^{a}=5^{5} \)

\(\Rightarrow a = 5 \)

\(\therefore 5^{(a-3)}=5^{(5-3)}=5^{2}=25\)

Enter details here

35.

\((0.04)^{-1.5}\) = ?

Answer: B

\((0.04)^{-1.5} = (\frac{4}{100})^{-1.5} \)

\(= (\frac{1}{25})^{-\frac{3}{2}} \)

\(= (25)^{\frac{3}{2}} \)

\(= (5^{2})^{\frac{3}{2}} \)

\(= (5)^{2\times \frac{3}{2}} \)

\(= 5^{3} = 125\)

Enter details here

36.

\(125 \times 125 \times 125 \times 125 \times 125 = 5^?\)

Answer: C

\(125 \times 125 \times 125 \times 125 \times 125 = (5^3 \times 5^3 \times 5^3 \times 5^3 \times 5^3 \times ) = 5^{(3+3+3+3+3+)} = 5^{15}\)

Enter details here

37.

\((17)^{3.5}\times(17)^{?}=17^8\)

Answer: D

Let \((17)^{3.5}\times(17)^x=17^8\)

Then, \((17)^{3.5+x}=17^8\)

\(\therefore 3.5+x=8\)

\(\Rightarrow x=(8-3.5)\)

\(\Rightarrow x=4.5\)

Enter details here

38.

If \(x=3+2\sqrt{2}\), then the value of \((\sqrt{x}-\frac{1}{\sqrt{x}})\) is:

Answer: B

\((\sqrt{x}-\frac{1}{\sqrt{x}})^{2}=x+\frac{1}{x}-2\)

\(= (3+2\sqrt{2})+\frac{1}{(3+2\sqrt{2})}-2\)

\(= (3+2\sqrt{2})+\frac{1}{(3+2\sqrt{2})}\times\frac{(3-2\sqrt{2})}{(3-2\sqrt{2})}-2\)

\(= (3+2\sqrt{2})+(3+2\sqrt{2})-2\)

= 4

\(\therefore (\sqrt{x}-\frac{1}{\sqrt{x}})=2\)

Enter details here

39.

The value of \((\sqrt8)^{\frac{1}{3}}\) is:

Answer: C

\((\sqrt8)^{\frac{1}{3}}\)

\(= (8^{\frac{1}{2}})^{\frac{1}{3}}\)

\(= 8^{\frac{1}{6}}\)

\(= (2^3)^{\frac{1}{6}}\)

\(= 2^{\frac{1}{2}}\)

\(= \sqrt{2}\)

Enter details here

40.

If \(a^x = b, b^y = c\) and \(c^z = a\), then the value of \(xyz\) is:

Answer: B

\(a^1 = c^z = (b^y)^z = b^{yz} = (a^x)^{yx} = a^{xyz}.\)

Therefore, \(xyz = 1.\)

Enter details here

Loading…
Tags: Surds & Indices Questions and Answers || Surds & Indices MCQ Questions and Answers || Surds & Indices GK Questions and Answers || Surds & Indices GK MCQ Questions || Surds & Indices Multiple Choice Questions and Answers || Surds & Indices GK || GK on Surds & Indices || Quantitative Aptitude Questions and Answers || Quantitative Aptitude MCQ Questions and Answers || Quantitative Aptitude GK Questions and Answers || GK on Quantitative Aptitude