Top

Surds & Indices

Important Instructions
11.

\((256)^{0.16} \times (256)^{0.09} = ?\)

Answer: A

\((256)^{0.16} \times (256)^{0.09} = (256)^{(0.16+0.09)} \)

\(= (256)^{0.25} \)

\(= (256)^{(25/100)} \)

\(= (256)^{(1/4)} \)

\(= (4^{4})^{(1/4)} \)

\(= 4^{4(1/4)} \)

\(= 4^{1} \)

\(= 4\)

Enter details here

12.

If \(\sqrt{2n}=64\), then the value of \(n\) is:

Answer: D

\(\sqrt{2n}=64 \)

\(\Rightarrow 2^{\frac{n}{2}}=64=2^6 \)

\(\Rightarrow \frac{n}{2}=6 \)

\(\therefore n=12\)

Enter details here

13.

The value of \((\frac{32}{243})^{-\frac{4}{5}}\) is:

Answer: D

\((\frac{32}{243})^{-\frac{4}{5}} \)

\(= (\frac{243}{32})^{\frac{4}{5}} \)

\(= [(\frac{3}{2})^5]^{\frac{4}{5}} \)

\(= \frac{81}{16}\)

Enter details here

14.

Given that \(10^{0.48}=x\)\(10^{0.70}=y\) and \(x^{z}=y^{2}\), then the value of z is close to:

Answer: C

\(x^{z}=y^{2}\) \(\Leftrightarrow 10^{(0.48z)}=10^{2\times 0.70}=10^{1.40}\)

\(\Rightarrow 0.48z=1.40\)

\(\Rightarrow z=\frac{140}{48}=\frac{35}{12}=2.9(approx.)\)

Enter details here

15.

\((2^{n+4}-2.2^{n})\div(2.2^{n+3})=2^{-3}\) is equal to:

Answer: D

\((2^{n+4}-2.2^{n})\div2.2^{n+3}+\frac{1}{2}^{3} \)

\(= \frac{7}{8}+\frac{1}{8} \)

\(= 1\)

Enter details here

16.

If m and n are whole numbers such that \(m^{n}\) = 121, the value of \((m-n)^{n+1}\) is:

Answer: D

We know that \(11^{2}\) =121.

Putting m = 11 and n = 2, we get:

\((m-1)^{n+1} = (11-1)^{(2+1)} = 10^{3} = 1000\)

Enter details here

17.

\((\frac{x^{b}}{x^{c}})^{(b+c-a)}.(\frac{x^{c}}{x^{a}})^{(c+a-b)}.(\frac{x^{a}}{x^{b}})^{(a+b-c)}=?\)

Answer: B

Given exp. = \(x^{(b-c)(b+c-a)}.x^{(c-a)(c+a-b)}.x^{(a-b)(a+b-c)}\)

\(=x^{(b-c)(b+c)-a(b-c)}.x^{(c-a)(c+a)-b(c-a)}.x^{(a-b)(a+b)-c(a-b)}\)

\(= x^{(b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2})}\)

\(= (x^{0}xx^{0})\)

\(= (1\times1)=1\)

Enter details here

18.

If \(m\) and \(n\) are whole numbers such that \(m^n = 169\), then the value of \((m-1)^{n+1}\) is:

Answer: D

Exp: Clearly, \(m = 13\), and \(n = 2\).

Therefore, \((m-1)^{n+1} = (13 - 1)^3 = 12^3 = 1728\)

Enter details here

19.

If \(5\sqrt{5}\times5^3\div5^{-\frac{3}{2}}=5^{a+2}\), the value of \(a\) is:

Answer: A

\(5^{\frac{3}{2}}\times5^3\div5^{3\frac{3}{2}}=5^{a+2} \)

\(\Rightarrow 5^{\frac{3}{2}}+3+\frac{3}{2}=5^{a+2} \)

\(\Rightarrow \frac{3}{2}+3+\frac{3}{2}=a+2 \)

\(\Rightarrow a+2=6 \)

\(\therefore a=4\)

Enter details here

20.

If \(a\) and \(b\) are positive numbers, \(2^a = b^3\) and \(b^a = 8\), find the value of \(a\) and \(b\)

Answer: B

Exp: \(2^a = b^3 ....(1)\)

\(b^a = 8 ....(2)\)

cubing both sides of equation \((2), (b^a)^3 = 8^3\)

\(\Rightarrow b^{3a} = (b^3)^a = 512\).

from \((1), (2^a)^a = (2^3)^3\).

comparing both sides, a = 3

substiting a in (1), b = 2

 

Enter details here

Loading…
Tags: Surds & Indices Questions and Answers || Surds & Indices MCQ Questions and Answers || Surds & Indices GK Questions and Answers || Surds & Indices GK MCQ Questions || Surds & Indices Multiple Choice Questions and Answers || Surds & Indices GK || GK on Surds & Indices || Quantitative Aptitude Questions and Answers || Quantitative Aptitude MCQ Questions and Answers || Quantitative Aptitude GK Questions and Answers || GK on Quantitative Aptitude