Top

Surds & Indices

Important Instructions
21.

The simplified form of \(\frac{x^{\frac{9}{2}}\times \sqrt{y^5}}{x^{\frac{7}{2}}\times \sqrt{y^3}}\) is:

Answer: B

Exp: \(\frac{x^{\frac{9}{2}}\times \sqrt{y^5}}{x^{\frac{7}{2}}\times \sqrt{y^3}}\)  is:

 \(= x^{\frac{9}{2}-\frac{5}{2}}\times y^{\frac{7}{2}-\frac{3}{2}} \)

\(= x^2 . y^2\)

Enter details here

22.

If \(2^{(x-y)} = 8\) and \(2^{(x+y)} = 32\), then \(x\) is equal to:

Answer: C

\(2^{(x-y)} = 8 = 2^3 \)

\(\Rightarrow x-y = 3 ....(1) \)

\(2^{(x+y)} = 32 = 2^5 \)

\(\Rightarrow x+y = 5 ....(2)\)

On solving (1) & (2), we get \(x = 4.\)

Enter details here

23.

\((0.04)^{-1.5}=?\)

Answer: B

\((0.04)^{-1.5}=(\frac{4}{100})^{-1.5}\)

\(=(\frac{1}{25})^{-(3/2)}\)

\(=(25)^{(3/2)}\)

\(=(5)^{2\times(3/2)}\)

\(=5^{3}\)

=125

Enter details here

24.

If \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\), then the value of \(x\) is:

Answer: C

Given \((\frac{a}{b})^{x-1}=(\frac{b}{a})^{x-3}\)

\(\Rightarrow (\frac{a}{b})^{x-1}=(\frac{a}{b})^{-(x-3)}=(\frac{a}{b})^{(3-x)} \)

\(\Rightarrow x-1=3-x \)

\(\Rightarrow 2x=4 \)

\(\Rightarrow x=2\)

Enter details here

25.

The value of \([(10)^{150}\div (10)^{146}]\)

Answer: B

\((10)^{150}\div (10)^{146}=\frac{10^{150}}{10^{146}}\)

\(=10^{150-146}\)

\(=10^{4}\)

\(=10000\)

Enter details here

26.

If \(3^x - 3^{x-1} = 18\), then the value of \(x^x\) is:

Answer: A

\(3^x - 3^{x-1} = 18 \)

\(\Rightarrow 3^{x-1} \times (3-1) = 18 \)

\(\Rightarrow 3^{x-1} = 9 = 3^2 \)

\(\Rightarrow x-1 = 2 \)

\(\Rightarrow x = 3\).

Enter details here

27.

if \(3^{(x-y)}=27\) and \(3^{(x+y)}=243\), then \(x\) is equal to:

Answer: C

\(3^{x-y} =27 = 3^{3} \Leftrightarrow x-y=3\) ...(i)

\(3^{x+y}=243=3^{5} \Leftrightarrow x+y=5\) ...(ii)

On solving (i) and (ii), we get \(x=4\).

Enter details here

28.

Solve for \(((3^{y})^{\sqrt{}2})^{2} = 729\).

Answer: C

Exp: \(((3^{y})^{\sqrt{}2})^{2} = 729\)

\((3^y)^2 = 3^4 (\sqrt2^2 = (2^{\frac{1}{2}}) = 2)\)

equating powers of 2 on both sides, 

\(y^2 = 4\)

\(\Rightarrow y = \pm2\)

Enter details here

29.

\(\sqrt{[200\sqrt{[200\sqrt{[200....... \infty ]}]}]} = ?\)

Answer: A

Exp: Let \(\sqrt{[200\sqrt{[200\sqrt{[200....... \infty ]}]}]} = x\).

Hence \(\sqrt{200x} = x\)

Squaring both sides \(200x = x^2\)

\(\Rightarrow x(x-200) = 0\)

\(\Rightarrow x = 0 \) or \(x-200 = 0\) i.e. \(x = 200\)

As \(x\) cannot be 0, \(x = 200\)

Enter details here

30.

\(\frac{1}{1+x^{(b-a)}+x^{(c-a)}}+\frac{1}{1+x^{(a-b)}+x^{(c-b)}}+\frac{1}{1+x^{(b-c)}+x^{(a-c)}}=?\)

Answer: B

Given Exp. = \(\frac{1}{(1+\frac{x^{b}}{x^{a}}+\frac{x^{c}}{x^{a}})}+\frac{1}{(1+\frac{x^{a}}{x^{b}}+\frac{x^{c}}{x^{b}})}+\frac{1}{(1+\frac{x^{b}}{x^{c}}+\frac{x^{a}}{x^{c}})}\)

\(= \frac{x^{a}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{b}}{(x^{a}+x^{b}+x^{c})}+\frac{x^{c}}{(x^{a}+x^{b}+x^{c})}\)

\(= \frac{(x^{a}+x^{b}+x^{c})}{(x^{a}+x^{b}+x^{c})}\)

= 1.

Enter details here

Loading…
Tags: Surds & Indices Questions and Answers || Surds & Indices MCQ Questions and Answers || Surds & Indices GK Questions and Answers || Surds & Indices GK MCQ Questions || Surds & Indices Multiple Choice Questions and Answers || Surds & Indices GK || GK on Surds & Indices || Quantitative Aptitude Questions and Answers || Quantitative Aptitude MCQ Questions and Answers || Quantitative Aptitude GK Questions and Answers || GK on Quantitative Aptitude